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I. INTRODUCTtON

An approximate asymptotic high frequency solution is developed for the

field exterior to a smooth, perfectly conducting convex surface when it is

excited by a ray optical electromagnetic field. In the conventional GTD

solution to this problem, the total field exterior to a surface is associated

with the usual geometrical optics (GO) incident and reflected rays in the

lit (or illuminated) region; whereas, in the shadow region it is associated

entirely with the surface diffracted rays* introduced by Keller [1,2,3].

These rays are illustrated in Figure 1 together with the regions labeled

I, II, III and V which divide the space exterior to the convex surface as

follows. The shaded region II constitutes the transition region adjacent

to the shadow boundary (SB of Figure 1) which divides the space exterior

to the scatterer into the lit and shadow zones. The angular extent of

region II is of the order of (2/kpg(Q) 1/3 radians, where k is the wave-

number of the homogeneous, isotropic medium exterior to the convex surface,

and pg(Ql) is the radius of curvature of the convex surface, in the plane

containing the incident ray and the surface normal. The point of grazing

incidence is specified by Ql. The sub regions IV and VI in the shadow and

lit zones, respectively, denote those portions of region II which are ex-

tremely close to the surface. In particular, regions IV and V are close

to the portion of the surface which is a caustic of the surface diffracted

rays; whereas, region VI is In the vicinity of Q, which is a caustic of the

reflected ray for grazing incidence. Thus, regions IV, V and VI are commonly

referred to as the caustic or surface boundary layer regions. The GTD is

valid in regions I and IlI, but it fails in regions II and V.

*The surface diffracted rays are in general present even in the illuminated

region if the surface is closed. 1
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I
An asymptotic analysis for the fields in regions II and V is comnpli-

cated due to the fact that the asymptotic character of the field changes

continuously but rapidly from one form to another across each of these re-

gions. In this paper, an approximate uniform GTD (or UGTD) solution is de-

veloped which remains valid in regions I, Ill and the portion of region II

which lies outside the sub regions IV and VI. An approximate asymptotic

solution which is valid within the caustic boundary layer regions IV, V and

VI is not considered in this work; it will be reported separately in the

:fr future.

The present ansatz or formulation of the uniform GTD solution is based

on an asymptotic solution recently obtained by Pathak [4] for the canonical

problem of plane wave scattering by a perfectly conducting circular cylinder.

The work in[ 4] extends and improves some of our earlier work[ 5], and like

most other analyses dealing with the diffraction by convex surfaces, this

development draws upon the pioneering contributions of FockL 6]. The sim-

ilarities and differences between the solution of the canonical problem in

[4] and some of the other solutions which currently exist in the literature

[7,8,9,10,11] are also discussed in L4]. The present ansatz based on the

form of the solution of the canonical problem in [4] leads to a uniform GTD

solution for an arbitrary convex surface which is convenient for engineering

applications.

It is assumed here that the incident electromagnetic fields may be

approximated locally by a quadratic ray pencil with a polarization which

is transverse to the incident ray direction. One notes that plane, cylind-

rical, conical, and spherical type incident wavefronts are simply special

cases of the arbitrary quadratic wavefront. It is further assumed in this

paper that the field point location and the caustics of the incident ray

3



II

pencil are not in the close vicinity of the surface, and that the amplitude

of the incident ray optical field does not exhibit a rapid spatial variation

in the vicinity of the points of reflection and diffraction on the convex

surface. The details of this analysis are described in Sections II and III.

First, a brief review of the GTD solution for this general problem of the

scattering of an arbitrary ray optical electromagnetic field by a smooth,

perfectly-conductinq convex surface is presented in Section II for the sake

of completeness. A uniform GTD solution to this problem is developed next

in Section III. Several examples illustratinq the usefulness and accuracy

nf this uniform GTD solution are presented in Section IV.

II. THE GTD SOLUTION - A REVIEW

This review serves to introduce the GTD format and notation that will

be employed in the development of the uniform GTD solution.

The incident ray system which strikes the convex surface produces a

system of rays reflected from that surface, and the field of these incident

and reflected rays constitutes the usual geometrical optics (GO) field.

The reflected ray merges with the incident ray at grazing forming a shadow

boundary which divides the space exterior to the convex surface into the

lit and shadow regions, as shown in Figure 1. At grazing, the incident field

launches Keller's surface rays which propagate along geodesic paths on the

*convex surface while continually shedding energy via diffraction along the

forward tangents to the surface ray paths. The field of these rays which

are shed (or diffracted) from the surface is known as the surface diffracted

4



field. The GO field is zero within the shadow region behind the obstacle;

* Ithus, the field within the shadow zone is produced entirely by the surface
diffracted rays. These surface diffracted rays may also be present in the

lit region if the surface of the obstacle is closed; however, this field

is generally negligible compared to the GO field if the closed surface is

sufficiently large in terms of the wavelength.

The GO solution for the lit region is briefly reviewed in Dart A of

this section. A brief review of the surface diffracted ray solution for

the shadow zone is presented next in part B. An exp(jwt) time dependence

is is assumed in this analysis.

A. The Geometrical Optics Field Solution for the Lit Region

Luneberg [12] and Kline [13] developed an asymptotic high frequency

solution of Maxwell's equations in which the fields are expanded in inverse

powers of the angular frequency, w. The leading term in this expansion is

i* regarded as the GO field. The details of such an expansicn are discussed

elsewhere [12,13,14,15] and are only summarized here. According to Luneberg

and Kline, the electric field intensity, E in a source free, homogeneous,

isotropic medium can be expressed for large w by

(T)~ q (7I)c

n=O (-jk)n

in which r is the position vector of the field point; k = w/c; and c is the

speed of liqht in the given medium. The coefficients n (r) in the aboven
expansion are determined by substituting Equation (1) into the vector Helm-

holtz equation satisfied byE; namely, (V2 + k2) = 0, and by equating like

L,.



powers of w. This leads to the usual eikonal and transport equations; namely,

IVill I I and IV* + 2vibVI En V E n 1 (with E_, = 0), respectively.

The surfaces of constant 4 are referred to as wavefronts, and the family

of all wavefronts describe a system of associated rays which are straight

lines in a homogeneous medium. The rays are everywhere orthogonal to the

wavefronts in an isotropic medium. Integrating the transport equation for

the n=O case from some reference point ro to the field point r, and expressing

this result in terms of the Gaussian curvatures of the wavefronts at r and
0

r yields the GO field:

jk~hi ,r (-F Pi r Pir i,r
-ri , rr0Pi1 -jks

o 0 i r + si r)( i,r +i,r ) e

2(2)

The superscripts "i" and "r" refer to the incident and reflected GO fields,

respectively; thus, T i is the incident GO field and rr is the reflected GO

field. Note that pir and pier are the principal radii of curvatures of

5i,rthe incident or reflected wavefront surface dA at ro' and s is the distance

along the incident or reflected ray from T toT as shown in Figure 2.

Next, requiring V*T = 0 leads to (Sir.i~r ) = 0, which implies that the

field in Equation (2) is polarized transverse to the ray directions (sir) as

shown in Figure 3. The quantity involving the square root in Equation (2)

is the ray divergence factor which indicates the manner in which the energy

spreads along the ray path; it is a consequence of the conservation of energy

in a ray tube (or pencil). From Maxwell's equation VxZ = - jwu'l, it follows

that the leading term in the Luneberg-Kline expansion for the corresponding

6
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magnetic field intensity is ir 5i,r x YoJi
'r in which i'r is as given

in Equation (?), and Y is the characteristic admittance of the medium.
0

From the boundary condition n x [ + = 0 on the perfectly-conducting

surface, where n is the surface normal at the point of reflection QR as shown

in Figure 3, one obtains

E(QR ) =E(QR) (3)

Thus, the reflected GO field is given in terms of the incident field at

as

r r
Tr() (Q) . Pl P2 e-ksr (4)p 1+sr)(p2+S )

; =[Rs e e + Rh e e ; Rs  l (5a;5b)
h

where R is the dyadic reflection coefficient, and pr, pr, and sr are measured
with respect to the reference point 0 which is now moved to QR" Rs and

Rh are the acoustic soft and hard reflection coefficients, respectively.

The unit vector e, in Equation (5a) is perpendicular to the plane of inci-

dence; whereas, the unit vectors e1 and e, are in the plane of incidence

as shown in Figure 3. The principal radii of curvatures (of the re-

flected wavefront and their associated principal directions (Xl,Xr) are de-

scribed in Reference [16]. The p 1 and p as given in [16] are expressed

more compactly below:

8



2 1
(pcQ )Cos 1 2 p=PQc fe 9 l 1 ")

ri 1 P (Q PTOs6 1

2

gcos2 o "1 4p2(Q )cos~ei /2f 0p'I(Q . 0i o anm~sl(l 1 - 1I '
(6a)

J' where

-T = g ;= tco~e . (6b;6c)
PM r 'Pl P2 g

The quantities pi and pl constitute the principal radii of curvatures of the
r reeautdttepot

incident wavefront. In Equation (6a), p, and P2are evaluated at the point

of reflection QR on the surface. R, and R2 constitute the principal radii of

curvatures of the surface at QR' and UI and U2 denote the corresponding

principal surface directions at QR. The radius of curvature of the surface at

QR is pg; it is measured in the plane of incidence which contains s', n and t,

where t is tangent to the surface. Also, pt is the radius of curvature of the

surface at Q, in the plane containing n and the binormal vector b. The unit

vectors t, n, b, U1 and U2 are shown in Figure 4a together with the angle
^i ^i

o between t and U2. The unit vectors X, X 2' and the angle ao are shown
A A. A Ain Figure 4b. The angle of incidence, ei is defined by n.s = n cse = _ n~sr.

It is noted that the GO representation of Equation (2) fails at caustics

which are the intersection of the paraxial rays (comprising the ray tube

or pencil) at the lines 1-2, and 3-4 as shown In Figure 2. Upon crossing

a caustic in the direction of propagation,(p i r + slr) chanqes sign under

the radical in Equation (2), and a phase Jump of +w/2 results (for e+jWt

time dependence). Furthermore, the reflected GO field, tr of Equation (4)

9
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7 I

fails at and near grazing incidence. However, it is important to note that

near grazing incidence (e -7/2), p, and P of Equation (6) approach the fol-

lowing limiting values.

r $(QR)cos d r iP 1 2 0; ). P2 Pb (7a;7b)

where
(sin2o/p1 ) + (cos 2o/ ), (8)

l/P~ = si2  2(8

and Pb is the radius of curvature of the incident wavefront in the (t,b)

plane (i.e., in the plane tangent to the surface) at QR for 0 i/2. Further-

more, the principal directions X and X of the reflected wavefront approach

the following values for grazing incidence:
r ^A

X1 f n (at QR) X2 = - sr x X) - b (at *R
)  (9a;gb)

The limiting values in Equation (9a;b) are independent of ao . The total

GO field, T at PL (see Figure 1) in the lit region is the sum of the incident

and reflected GO ray fields; hence,

_r r

E(PL) ~+ (R) . PSr)(P+sr e, p;+r) p;r -js (10)

B. The Surface Diffracted Ray Field

Solution for the Shadow Region

The incident ray at grazing launches a set of surface rays which propa-

gate along a geodesic path on the convex surface thereby carrying energy

into thp shadow region. The field associated with these surface rays attenuates

(i.e., decays exponentially) as they propagate due to a continuous shedding

11



(diffraction) of rays along the forward tangents to the geodesic ray path,

as shown in Figure 5. An analysis of this surface diffracted field is dis-

cussed in detail elsewhere [1,2,19 ; hence, only the essential features are

summarized here. Let nl and ti denote the unit normal and tangent vectors

at the point of grazing incidence, Ql; likewise, let n and t denote the

unit normal and tanqent vectors, respectively, at the point of tangential

shedding of the surface diffracted ray at Q2. The diffracted ray pencil

possesses caustics at Q2 and Pc as seen in Figure 5; these caustics are the
same as those at 3-4 and 1-2 of the typical ray pencil in Figure 2. The

diffracted electric field arriving at P5 may be represented as a ray op-

tical field; hence d is given by Equation (2) with the superscripts "i,r"
d d

replaced by "d" to denote the "diffracted" ray. Then pi and p become the

caustic distances associated with the diffracted wavefront at some reference

point (r ) which lies between Q and PSI as in Figure 2. However, if the
0

refeenc po itinr is moved back to the caustic at Q2 then d O and
d

now becomes the distance from Q2 to Pc. Let

j k q)d ( r 0 1) p -ilim E ( r)e-. (11)

Therefore, the electric field (rd) at a point Ps in the shadow region (see

Figure 1) becomes d
d d

-rd~p -r i-jks

i(QIQ 2 ) is a "dyadic transfer function" which relates the field diffracted

from Q2 to the field incident at Q,. This dyadic quantity is expressed as[3,15J

12
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T(QIQ 2) b1b2 Ts + nln 2 Th (12b)

in which
it  Q2 s

* r .r f (t-)dt-
N [e Qkt? sh1 h

TS= DpCl) e D(Q2) (12c)

and t is the geodesic arc length from Qto on the surface. It is clear

from Equation (12b) that the ray field in Equation (12a) is polarized transverse

to the ray path. It is assumed in Equations (12a;b) that the n2 and b com-

, ponents of Ed propagate independently of each other. The sum in Equation

(12c) indicates that the surface ray field is actually composed of a set

*. of surface ray modes as indicated earlier, and n refers to the modal index.

The superscripts s and h in Equations (12b;c) dnote the acoustic soft and

hard type field contributions, respectively. D (QI) are referred to as the

surface dif-frection coefficients which describe t~e diffraction at Ql.

h h 2
The forms of D (O) and D (Q2 ) must be identical via reciprocity. Th5 factor

2 Q
Q2 s

-jkt - f cth(t-)dt'
dn(Ql) Ql

dri (Q 1) eI

is the ratio of the surface ray field incident at Q2 (prior to diffraction

from Q2) to the surface ray field launched by the incident field at Ql.

This factor is obtained by integrating

" asd (a n (eha2 n

h h

14
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from Qto Q, with a2 being the intensity of the pth soft and hard surface

ray field and dt is the incremental arc length between Q, and Q2. This ex-

pression is based on the assumption that energy is conserved in the surface

ray pencil between Q, and Q2, andsthat the surface ray decays exponentially

with an attenuation coefficient c4. The factor eikt denotes the dominant

phase delay of the surface ray field from Q, to Q2 "

The form of the solution in Equations (12a;b;c) has been verified via

asymptotic solutions to appropriate canonical problems P,17]; also, s

these canonical solutions lead to the specific expressions for D hand h

which to first order are given by P,173

[D2 1/3 -Ji2 1/3 J;2
7Ai (-qp)]=Fl(kp; [D =J'W; e

p [Ai'(-q 2p

(13a;13b)s p 1kg/3 e1 p~2 /3

q e = e . (14a;14b)

g )
p pg 2 pg •

The Ai and Ai' denote the Keller type Airy function and it's derivative

P,151 respectively. The values qp and qp are those for which Ai(-qp) = 0

and Ai'(-qp) = 0. The values of Al(- p) and Ai'(-qp) are given in t9,18].

It is noted that Pg refers to the surface radius of curvature in the ray

direction (i.e., in the n,t plane). In Equation (12c), the inclusion of

only the first couple of modes (i.e., p=l,2) is sufficient for obtaining

accurate results in the deep shadow region. However, the result in Equations

(12a;h;c) fails at and near the shadow boundary; it also fails near the

caustic at Q2

15
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I11. THE CONSTRUCTION OF A UNIFORM GTD SOLUTION

The GTD solution of Section II fails at and near the shadow boundary

because the GTD ray optical field description is not valid there. Conse-

quently, one must employ a uniform asymptotic field approximation which remains

valid within the shadow boundary transition region. A uniform theory must

therefore basically depart from the pure ray optical field approximation

inherent in the GTD in order to correct for the failure of the GTD within

the shadow boundary (SB) transition region; whereas, away from this SB tran-

sition region, it must reduce to the usual GTD solution where the latter

is indeed valid. The precise manner in which a uniform theory accomplishes

such a task differs with each ansatz. While different formulations of uni-

form solutions might even lead to the same answers exactly at the SB, and

also exterior to the SB transition region where they all must reduce to the

GTD solution, their behavior within the transition region may not necessarily

be the same.

As mentioned in Section I, the ansatz employed in this paper is based

on an asymptotic solution given by Pathak [4] for the canonical problem of

plane wave scattering by a smooth, perfectly-conducting convex cylinder.

This ansatz leads to a uniform GTD solution for the general problem of the

scattering of a ray optical electromagnetic field by a smooth, perfectly-

conductina convex surface of any shape, such that the solution thus obtained

is convenient and accurate for engineering applications. The startinq point

in the development of this qeneral solution is the uniform result given in

Equations (A-16a;b) of the Appendix, for the far zone fields of a scalar

point source radiating in the presence of an acoustic soft or hard, smooth

convex cylinder. The result in Equations (A-16a;b) is developed in the Ap-

pendix from the uniform asymptotic solution of the canonical problem of

L4],the latter solution is also summarized in Equations (A-la;b) of the Ap-

pendix. The reader is referred to the Appendix for details.

16
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First, it is observed that the uniform result in Equations (A-16a;b)

is already in the convenient ray type format; however, the field itself is

not a ray optical field within the SB transition region. The scattered field

in Equations (A-16a;b) propagates along the GO reflected ray path in the

lit region (which also includes the lit portion of the SB transition reaion),

and it propagates along the surface diffracted ray path in the shadow region

(including the shadowed portion of the SB transition region). This uniform

result properly reduces to the GO soft or hard type ray field solution in

the lit region which lies outside the SB transition region, and also to the

soft or hard type surface diffracted ray field solution in the shadow region

which lies exterior to the SB transition region. The preceding reduction

to the GTD solution is easily verified by noting that the F and Ps functions

which occur in Equations (A-16a;b) of the Appendix take the following lim-

iting values, when the field point moves exterior to the SB transition region:

(which is true both, in the lit and
[l-F(o)] - 0 , for o>>0 shadow zones exterior to the SB

(transition region.

(15)

!{RJ~T~ which is true in the lit zone)
-R 31- 

, for exterior to the SB transition

h 4region.

(16a)

17



-~ N 16 Aq pe-

S ,rA . . . .. . . .. . .. . ..... I

P 2[Ai'(-q) which is true in

for 6>>O the shadow zone
Ne 6exterior to the SB

(transition region.)
h(6) e e e

h-j P I 2 _q[Ai- )]2

(16b)

The N in the summation of Equation (16b) is identical to the N in Equation

(12c); it is noted that N=2 generally provides sufficient accuracy when 6>>O.

Furthermore, the limit of the result in Equation (A-16a) as the field point

approaches S9 from the lit side is identical to the limit of the result in

Equation (A-16b) as the field point approaches SB from the shadow side; thus,

the total field is continuous across SB. It is noted that as the field point

approaches SB:

F(a) F - 2a e' e + a), for a-0 (a=O on SB). (17)

Also, the limiting value of the field at the SB is more easily evaluated

if one defines Ps(6) in terms of the related functions p*(S) and q*(S) as

in [4]: h

I*(S) eJ

P e (6) e (Note that 6=0 at SB). (18)

h q*(6) 2Ji6

From the above limiting forms of F(o) and P s(S), one notes that the F(a)

h
term in Equations (A-16a;b) plays a dominant role in the immediate neighbor-

hood of SB, and it is entirely responsible for ensuring the continuity of

18
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the total field at SB. On the other hand the P s(6) term in Equations (A-

h
16a;b) plays a dominant role as the field point moves far from SB (since

ll-F(o)I + 0), and it is therefore entirely responsible for reducinq Equations

(A-16a;b) uniformly to the GTD solution, exterior to the SB transition region,

for the case of the far zone field of a scalar point source radiating in

the presence of an acoustic soft or hard convex cylinder. A more complete

discussion on the role of the functions F and P is given in Reference [4],

in connection with the development of a uniform"asymptotic solution to the

canonical problem of plane wave scattering by a convex cylinder. It is im-

portant to note that the F function involves a Fresnel integral which is

well tabulated; and Ps is a Fock type integral (involving Airy functions)

which is also tabulatdd.

It is observed that the GTD solution of Section II, which is a first

order asymptotic solution to terms in inverse powers of kpg, is valid for

cylindrical, spherical, or any other smooth convex shape. It is also valid

for torsional surface rays in that effects of torsion do not occur explicitly

to first order for the scatterinq problem considered here. In addition,

it is observed that a simple relationship exists in the GTD solution between

the vector electromagnetic and the scalar acoustic problems to the given

order of approximation; namely, A and T of the GTD solution in Equations

(5a;b) and (12a;b) are a simple combination of the corresponding scalar or

acoustic (soft and hard) functions Rs, and Ts for the lit and shadow regions,

respectively. The last two observations in Pegard to the GTD solution in-

cluding it's validity for torsional surface rays have been verified via the

rigorous asymptotic solutions to several canonical problems [3,18]. Based

on these observations and the previous observation that the uniform asymp-

totic result in Equations (A-16a;b) of the Appendix dealing with the far

19



zone field of a point source radiatinq in the presence of an acoustic soft

or hard convex cylinder is already in a ray format, it is reasonable to con-

jecture the followinq in regard to the uniform GTD solution:

(a) The uniform GTD solution for the general electromagnetic problem

* of the scattering of a ray optical electromagnetic field incident on

a smooth, perfectly-conducting arbitrary convex surface can also be

expressed in a ray type format like the ordinary GTD solution of Sec-

tion II (see Equations (10) and (12a)).

(b) The dyadics R and T in Equations (5a;b) and (12a;b) of the or-

dinary GTD solution may be replaced by the more general A and TY dyadics

for the uniform GTD solution. Of course, R R must be true in the

lit region outside the SB transition region and R T must be true

V in the shadow region outside the SB transition reqion. Furthermore,

the functional forms of I and T are assumed to be the same for cyl-

indrical, spherical, or anv other convex shape, as is true of the

and T dyads in the GTD solution.

(c) The uniform GTD solution for the electromagnetic case may also

he simply expressed in terms of the corresponding scalar (or acoustic)

soft and hard cases, respectively, as in the GTD solution [see Equa-

tions (5a), and (12b)].

Thus, the form of the uniform GTD soldtion for the total electric

field, C may be expressed via the con,-ctures in (a) and (b) above, as:

" j pf P -jks r
r(PLYE1(P )f QRJ e ;jks for PL in the (19a)

i(R f+sr)(_+P ) lit region

dP d
UP S)Ps)~1i(Ql).t P2 e' jksdsd(p d sd) for s in the

shadow region. (1gb)
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* The incident ray field Ei is the same as in Equation (2) or (10). From con-

jecture (c) above, one may express R and f in terms of their corresponding

acoustic soft and hard functions as:

R = Rs P. +Rh., (20)

Ts blb 2 +h n2n2  . (21)

The results in Equations (19a;b) together with the dvadics in Equations (20)

and (21) are expressed in the same incident, reflected and surface diffracted

ray coordinates as those employed in the GTD solution of Section II. The

subscripts s and h in Equations (20) and (21) refer to the acoustic soft

and hard cases, as before. From Equations (20) and (21), and conjecture

(b) above, an obvious choice of R and Ts is directly available from the

h h
acoustic soft or hard solution of Equations (A-16a;b) in the Appendix. Thus,

-L)/ 1 2  e r L L1 for the lit
s=~ ~ -jl F(X)d + P(L , fo h ih L I region

m(Q1m(Q2  AL~ -[~Fx) dn(Q1) -jkt

h h 2)

for the
shadow reqion.

(23)
I The various parameters occurrinq in Equations (22) and (23) are thus defined

IIbelow as in Equations (A-Ila) through (A-llt) of the Appendix.
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• Q2L13 P(QR) 2i d:
rL=-2m(QR)Lf(QR)]-/3 ; f(QR)+t--2 d2 (t'

cos e pgdt'

(24a;24b;24c)

11/3 Q2

m(Q) t f dt' ; (24d;24e)
01

XL .2kLLcos2 i d  k Ld(Ed) 2
?m Q.. 2kL c(24f;24g), = m(Ql)m(Q2 )

For an electromagnetic spherical wave (or point source) type illumination,
and for the field point in the far zone where sr >>Pr and d d.

___________and, sd>>2 in Equations

~r r r r J d J

(19a;b) such that r r 2 and (P ,the(pr+sr)p +r) r s r  , ndsddp+sd) ~ d ,th

"distance" parameters L andLd in Equations (24f;24g) are given for this

special case byLL = sr andLd = sd as in Equations (A-16a;b). It is notedrsd  d
that sr, d andp2 appearing in Equations (19a;b) correspond to,, s3 and

in Equations (A-16a;b), respectively. Therefore, in order to complete

the solution in Equations (19a;b) for the qeneral case, one need only specify

the parameters LL and Ld. To recapitulate, the general case deals with an

arbitrary incident ray optical electromagnetic field, an arbitrary convex

surface, and a near zone field point (for which the field point may be sev-

eral wavelengths from the scattering surface, but yet not far in comparison

with the characteristic dimensions of the scatterer). As mentioned previ-

ously in Section I, the plane, cylindrical, conical and spherical wavefronts

are special cases of the arbitrary quadratic wavefront approximation implied

in the ray optical description of the incident field. Recalling that

the role of the F(XL) and F(Xd) functions is to ensure the continuity
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0 I
of the total field at SB, one may then evaluate XL and Xd appearing in

XL and Xd, respectively, by actually enforcing the continuity of the

total field at SB. This procedure is exactly analogous to that employed

previously by Kouyoumjian and Pathak [16] in their development of a uniform

GTD solution for the diffraction of an arbitrary ray optical electromagnetic
field by an edge in an otherwise smooth surface. Let P SB denote a field

point on SB. The continuity of the total field at SB requires that

lim = urn [(Ps) , (25)PL PSB Ps PSB

in which EPL) and E(Ps) are given by Equations (19a) and (19b). Employing

the limiting form of Equation (17) for the F function, and the definition
, A

qiven in Equation (18) for the P function, into Equations (22) and (23),

allows one to write Equation (25 as:

11
(l . 1 . ) i (l) . (i(Ql I + m( ej (p*(0)1 sf (r )e'jks
/ nlJ 1s 2 £nlll ) e lq*(0)J J] pi+s

( \nl/ nq*(O) r r2+s )

at the SB. (26)

With the distance from Q, to PSB defined as s, one obtains.

5 rj s sd1

s =s (27a;27b)
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It is noted that if PL PsB , then 8-b-i/2, Lo Q p O (see Equation
^i A Ar A A A d~o

(7a)), e,,-n1, e,,+n1 , and e--bJ. Likewise, if PsPSB, then Q2 QI
.... d

t O, n2+nl, and b2+b I. Furthermore, at SB, p2 :P2. The functions p*(S)

and q*(6) are continuous everywhere including 6=0. Let the incident field

he described by a diverging wavefront in the direction of propagation at

Q1 (i.e., at grazing); thus, one may write,

fk\ / jksobi i(Q a, (ro +o))+o e (28)

i

where s0 denotes the distance s' from some reference point at ro to the point

01. The quantities a4 ( 0 ) and a,(ro) which are the b, and n, directed ampli-

tudes of -0 at the reference location (-o) are assumed known. It follows
0

from Equation (28) that

P P -jkls +sJaI o Pr PP .P e (29)
(n PSB a,,(+o )

The incident wave caustic distances 01,2 are measured from the reference

point at r to the respective caustic locations. Incorporating Equations

(28) and (29) into (26) yields

d  (Pi+so)(P+so) s(p+s)
L i "r , at SB. (30)

SB (p'+[s +S] ) (P+[so+s])

Since the distance parameter is a slowly varying quantity near SB, and

since (1-F) vanishes sufficiently rapidly as the field point moves

far from SB; it is convenient to use the value in Equation (30) for LL and
id

L even away from SB. It is assumed of course in the present development

(as pointed out in Section I), that the field point location and the caustics
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of the incident wavefront are not in the close vicinity of the surface, and

that the field point itself is not in the neighborhood of any caustics as-

sociated with the incident and scattered rays. Furthermore, it is assumed

that the amplitude of the incident ray optical field does not exhibit a rapid

spatial variation in the vicinity of the points of reflection and diffraction

on the surface. This completes the construction of the uniform GTD solution

in Equations (19a;b) for a diverging wavefront.

If the incident wavefront is of the converging, or converging-diverging

type, then the parameters LL'd in Equation (30) can become negative. It

has not been investigated in detail how the general solution can be completed

when LLd becomes negative. However, if one of the principal directions

of the incident wavefront coincides with one of the principal planes of the

surface at grazing, then one can treat a converging or converging-diverqina

type wavefront for which LLd<o, by replacing F(XL 'd) with F*(IXLdl). The

* on F*(IXLd1) denotes the complex conjugate operator. The use of F*(IXL'di)

when L 'd<o leads to a continuous total field at SB in this case, and it's

use may he justified as in the edge diffraction problem L19) via an analytic

continuation procedure to include negative values of XL'd (or Ld) while

simultaneously satisfying the radiation condition for the scattered field.

Finally, exterior to the SB transition region, the uniform GTD result

of Equations (19a;b) does indeed recover the ordinary GTD result of Equations

(10) and (12a) as may be verified by employing the limiting forms of Equations

(15) and (16a;b) into Equations (22) and (23).
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It is noted that a solution for the SB transition region pertaining

to the same general problem as the one considered here has also been given

by G. James*; however, his solution which is presented without sufficient

details is not uniform in that it does not properly reduce to the GTD solu-

tion exterior to the SB transition region. Furthermore, that solution em-

ploys a "pseudo" ray path for the reflected field in the lit region; such

a path does not satisfy the generalized Fermat's principle. On the other

hand, as is well known, the GO reflected ray path which is employed in this

paper indeed satisfies the generalized Fermat's principle.

IV. DISCUSSION AND NUMERICAL RESULTS

A uniform GTD solution has been obtained for the problem of the scat-

tering of a ray optical electromagnetic field by a smooth, perfectly-conducting

convex surface as shown in Figure 1. This result is explicitly given in

Equation (19a) for the lit region, and in Equation (19b) for the shadow region,

together with the parameters in Equations (20) through (24g), and also Eq-

uation (30). While the behavior across only a single shadow boundary (SB)

is discussed in this paper in connection with the open convex surface of

Fiqure 1, the present theory can just as easily treat the scatterina by a

closed convex surface. Basically, one treats a closed convex surface via

the uniform GTD in the same manner as one would via the ordinary GTD; thus,

the only difference between the two approaches is that the A and f dyads

in the GTD solution are replaced by the more general and more accurate 9

and T dyads in the uniform GTD solution. It is noted of course that the

*G.L. James, Geometrical Theory of Diffraction for Electromagnetic Waves,

published by Peter Peregrinus Ltd., Southgate House, Stevenage, Herts. SGl J
]HQ, England, 1976.
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usual GTD solution fails within the shadow boundary transition regions; where-

as, the uniform GTD solution does not. When a surface of revolution is il-

luminated by a plane wave which is incident along the axis of revolution

of the surface, a caustic of the surface diffracted rays lies on this axis.

The uniform GTD solution fails (as does the usual GTD solution) in the neigh-

-!borhood of such a caustic. However, if the field point is in the near zone

such that the caustic and the shadow boundary directions are widely sepa-

rated, then one can employ the method of equivalent ring currents to evaluate

the field in the neighborhood of such a caustic. The equivalent currents

in this case are found indirectly from the uniform GTD solution. Such a

* procedure will be reported in a separate paper toqether with another approxi-

mate technique which would yield the field near caustics for the special

case when the caustic and the shadow boundary directions tend to coincide.

The latter special case arises when the field point is near the axis but

in the far zone behind the surface of revolution. The other restrictions

on the uniform GTD solution are mentioned at the end of both, Sections I

and IIl, respectively.

It is interesting to note that the 6 of Equation (24a) may be approxi-

mated for convenience by -2 m(QR)COS i (upon arbitrarily setting f-1 /3(QR)=l)

without affecting the accuracy of the solution. Furthermore, it is

easily verified that the LLd parameter of Equation (30) simplifies to give

the following:
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S's for a 2-D cylindrical wave (i.e., line source),or an obliquely incident 3-D spherical wave
(i.e., point source) illumination.

Ltd

s , for a plane wave illumination (s L). (31)

In the above expression, s' denotes the distance from the source point to

the point of grazing incidence at Ql. For the cylindrical wave illumination

s' and s are to be interpreted as the distances in the complete 2-D problem.

With LL'd as in Equation (31) for plane, cylindrical, or spherical wave il-

lumination, it is easily verified that the uniform GTD result of Equations

(19a;b) satisfies reciprocity. Finally, this uniform GTD solution is simple

and accurate to use since it is given in terms of the F and P type functions

h
which are tabulated. These important aspects of the present uniform GTD

solution are illustrated below by applying it to several interesting prob-

lems.

Consider an infinitely long circular cylinder of radius (a) as shown

in Figure 6a. The geometrical optics field for this geometry is shown in

Figure 6b for an electric dipole (acoustic soft boundary condition) and in

Figure 6c for a magnetic dipole (acoustic hard boundary condition) mounted

parallel to the cylinder axis. As is well known, the geometrical optics

field breaks down near the shadow boundaries. This is readily apparent in

these two figures. Nevertheless, this solution has often been applied to

obtain a result for the scattering from a cylinder. The uniform GTD solu-

tion presented in this paper, however, can be quickly and accurately computed.

The uniform GTD result is compared with the geometrical optics result in

Figures 6b and c. Obviously, a much more complete result for the problem
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Figure 6a. Infinitely long circular cylinder.

I.

29



UGTD

---GO

191

Figure 6b. Comparison of the geometrical optics and uniform geometrical
theory of diffraction radiation patterns for an electric dipole
in the presence of an infinitely long circular cylinder with

a : lA and p' = 2A.
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Figure 6c. Comparison of the geometrical optics and uniform geometrical
theory of diffraction radiation patterns for a magnetic dipole in

the presence of an infinitely long circular cylinder
with a = IA and p' = 2A.
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in Figure 6a is obtained using the uniform GTD presented here. The validity

of this result is shown by comparing it with the exact eigenfunction solution.

The exact and the uniform GTD results for the two polarizations are compared

in Figure 7. The agreement is excellent and hence confirms the validity

of the uniform GTD solution.

The next example is of an electric dipole in the presence of a finite

circular cylinder, as illustrated in Figure 8a. Measurements have been made

on this satellite shape by Bach [20] and are used for comparisons with the

calculated results in Figure 8b. The pattern is taken in the x-y plane.

The end caps of the cylinder do not have a large effect in this plane and,

therefore, do not need to be included. Note that the dipole is aligned

parallel to the x axis. This causes the cylinder to be illuminated by a

slowl'y varying field. The measured and calculated results, however, are

in qood aqreement within experimental accuracy.

An example of a magnetic dipole in the presence of an elliptic cylinder

is considered next, as illustrated in Figure 9a. The pattern is a conic

cut about the cylinder axis. The dipole is parallel to the cylinder axis.

this could represent a slot mounted near an aircraft fuselage, engine, or

store. The calculated result is compared against a result obtained from

a moment method solution* in Figure 9b. The agreement is very good, again,

verifying the validity of the present solution.

*This solution has been kindly furnished by Dr. N. Wang.
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Figure 7a. Comparison of the exact elgenfunction and uniform geometrical
theory of diffraction radiation patterns for an electric dipole in

the presence of an infinitely long circular cylinder
with a = iX andp' 2X.
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: Figure 7b. Comparison of the exact eigenfunction and uniform geometrical
" theory of diffraction radiation pattern for a magnetic dipole in
.. ithe presence of an infinitely long circular cylinder

i with a = Ix and p' =2x.
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~Figure 8a. Geomietry of an electric dipole situated 19 cm from the center
~of a finite circular cylinder 10 cm in radius and 22 cm long.
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i Figure a. Geometry for a magnetic dipole 
situated parallel to the axis

, 
of an infinitely long circular 
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Figure 9b. Comparison of a moment method and uniform geometrical theory
of diffraction radiation pattern for a magnetic dipole in thepresence of an infinitely long circular cylinder. The pattern

is a conic cut about the cylinder aixs.
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In order to validate this solution in terms of a more complex surface

consider the circular cone configuration illustrated in Figure 10. A half-

wave dipole is located in the near zone of the cone, and the near zone field

is measured as the receiver moves azimuthly around the axis of the cone.

Both a vertical and horizontal dipole are treated with the resulting patterns

shown in Figures Ila and lib, respectively. In each case the calculated

and measured results are in good agreement. Note that the receiver polari-

zation was aligned with that of the transmitter in both cases.

The last example is used to show a cylinder being illuminated by a

complex wavefront that can be represented in terms of an astigmatic tube

of rays. The source of the astigmatic tube of rays or the quadratic ray

pencil which impinges on the cylinder is the edge diffracted field of a plate

mounted on the cylinder such that the cylinder is not in the shadow boundary

transition region of the edge diffracted fields. The geometry used is il-

lustrated in Figure 12. The antenna is a slot mounted parallel to the cylinder

axis in the center of the plate. The calculated and measured results for

this configuration are shown in Figure 12. There is good agreement between

measured and calculated results, thus confirming the validity of the uniform

GTD solution for a cylinder illuminated by a more general wavefront.
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40



71

I I

* - A14GL (DEGREESI
c0 , 36 " O 144 160 216 252 296 324 360

% T_

0-

It

VERTICAL POLARIZATION
Al 1 3.O2? 4
A2, 1065 X

UJ-10 - XS 5.12 k
U . YS . 0.0

ZS • 12.89 X
RF . 32.52 X
ZF • te.i5

-20 LENGTH OF CONE F 14.56 X

Figure 11a. Comparison of measured (dashed curve) and calculated (solid
curve) radiation patterns for an electric dipole mounted parallel

to the z axis of a circular cone.
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Figure 11b. Comparison of measured (dashed curve) and calculated (solidcurve) radiation patterns for an electric dipole mounted paralle
to the y axis of a circular cone.
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APPENDIX

FAR ZONE FIELDS OF A SCALAR POINT SOURCE RADIATING IN

THE PRESENCE OF A SMOOTH CONVEX CYLINDER

An approximate uniform asymptotic result for the field (u2) exterior

to a smooth convex cylinder illuminated by an incident plane wave (ui) is

presented in Equations (45a) and (44a) of [4]. It is repeated here as fol-

lows:

'3
rp

-U2( ')u2(P)+u2(QR) e [-F(X')]Ps( - e
h [P '

for P in the lit region. (A-la)

-e4 ^ , ejks2
u2(P)~U2(Qa)j jm(Qa)m(Qb)L -jk 2 e [lF(X)]+ps(J _ ;

for P in the shadow region. (A-lb)

The subscripts "s" and "h" refer to the acoustic soft and hard cases,

respectively; whereas, the subscript 2 refers to the two-dimensional (2-D)

nature of the problem. The points P, QR' Qa and Qb in Equations (A-la;b)

are illustrated in Figure A-1 for the case when 00 = 7r/2; i.e., for "normal

incidence". Also, the parameters for the lit region are given by

2m(2QR)cosO Pr = ; (A-2a;A-2b)
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m(QR) /23 (A-2c)

in which is the radius of curvature of the surface at Q and

X 2k2cos20 i  (A-2d)

The shadow region parameters are given by
Q Qb

m(t') dt' t dt' (A-2e;A-2f)

a aLa. P9 W 2
X ks 2  q [MW)k ]1/ . (A-2g;A-2h)X m(Qa)m(Ob)] ; m(t') [2 g h|

It is noted from Figure A-i that s2 : s3 (for 0o : iV2); Z 3 3 (for 00 /2).

The functions F and P are defined by [4]

.2
F(S) 2j,- eJ1 5fdT e ; for 6>0 (for 6<0, see Section

III of text). (A-3)

.j 1, for acoustic soft
.s e QV(T) j T case

P d (CF) d
h OW, for acoustic

3T hard case.

The a in (A-4) is positive in the shadow region; whereas, it is neqative

in the lit reqion. The shadow boundary occurs at c=0. The Fock type Airy

functions V(W) and W2(T) are defined in [9], such that
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3
?.i V(T) = W(T )  W2 (T); WI (T )  L f dt eT t - t 3  . (A-5a;A-Sb)

2

The contour of integration rI runs from - e-j (2 /3) to c, and r2 is the complex

conjugate of r1. The functions F(6), p*(a), and q*(o) are plotted in [4];

it is noted that the functions p*(a) and q*(() are simply related to Ps(a)

and Ph(G), respectively, via the relations given in Equation (18) of Section

A solution to the three-dimensional (3-D) problem of the scattering

of an obliquely incident plane wave by a smooth convex cylinder as in Figure

A-1 is directly obtained from the solution in Equations (A-la;b) for the

?-D normal incidence plane wave case via the method of separation of variables.

Let u3 represent the total exterior field for the 3-D case, with the

subscript "3" beinq emploved to distinquish the 3-D nature of the problem.

Then, satisfies the scalar wave equation,

(V? + k2) u3 = O. (A-F)

This obliquely incident plane wave field u3 may be expressed in the form

-jkz k=cose1
u3  5i2kt) e Z ksinef (A7)3k2

t  osin f

where u2(kt) has the same spatial dependence as u2 in the 2-D result of Eq-

uations (A-la;b) except that the "k" in those equations is now replaced by

"kt". Thus, ul(kt) is the component of the incident field which propagates

transverse to z with a wavenumber kt. One notes that 8o is the angle between

the incident ray direction and the z-axis as in Figure A-l, where the z-axis

is pa, ellel to the qenerator of the cylinder. The zcattered field can also

he split up as in Equation (A-7). Consequently, one may write

48

II



-jk z
u3 = u2(kt ) e z (A-8)

where

=2 +, (A-9)

t and u2 or u2(kt) is the same as in Equations (A-la;b) with the "k" in those

equations replaced by "kt". Thus, u3 is obtained via Equations (A-la;b),

(A-7) and (A-8) as

--4 e 4  F(xL
u3/)~3(1)+3(R ) -( e 2 L{- r+,,

-Jkth3sineo-JkzZ

e

for P in the lit region. (A-lOa)

i -jk t3 IJ dj+
~ a- - am(b) e Jkttsino t 2 r d h

e jkts 3sinO-jk z z

for P in the shadow region.

(A-lOb)

Ir obtaining Equation (A-10a) it is assumed for the sake of convenience that

the origin of the z axis is located at the point of reflection, QR; whereas,

in Equation (A-lOb) it is assumed that the origin is at the point of qrazing

incidence, Q a This choice of the origin simply implies that the axial (z)

49



separation between the points QR or Qa' and the field point is the distance

"z". Thus, z=9,3coseo0 in Equation (A-lOa) for the lit zone; whereas, z=s 3cose0

in Equation (A-15b) for the shadow zone. It is easily verified that, the

parameters for the lit zone are

! L 1/3cosi Pg_ ",2 r PTCOSO i

-2m(QR)f- COS f=l + cs " Pt 2sinSPtn 0

(A-lla;A-llb;A-llc)

XL Z 2kt( 3sineo) Cos- i : 2k i - sin2 o + 2 1cos
2  ;

sin2 P0

(A-lld;A-lle)

1- 2 -1.2
Ptn = Cos o+ sin ; U= z; U= U x n.

(A-llf;A-llg;A-llh)

The anqle of incidence (ei) is defined as usual by Z. n - =i,r = cosei.

The angle (w ) is shown in Figure 4, and p and p are the principal radii
0A

of curvatures of the surface along the U2 and U1 directions, respectively.

In the case of a cylindrical surface, pzo . The parameters pg and Ptn are

the surface radii of curvatures in the (n,t) and (n,b) planes, respectively,

where the unit vectors t, n, b are shown in Figure 4a. It is noted that

the definitions of m(QR) and r are the same as in Equations (A-2b) and (A-

?c), respectively, except that p g in Equation (A-lle) has the same value

as pg(QR) in Equation (A-2b) only for e 0 n/2 (when kz=O and kt=k); other-

wise, pg(MR) of Equation (A-2b) is really PT appearing in Equation (A-lle).
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I
I

Furthermore, ,2 =sinOo . Likewise, the parameters in Equation (A-lOb) for

N the shadow region are given by

0 b Qb d ks3(d)
2I d f m(t' x 3(X

ts~ n dt' ; t 3  f dt'
0a)a g a 2m(Qa)m(Q

' (A-lli;A-llj;A-llk)

The function m(t') is defined as in Equation (A-2h) with

!!2~~ -t' -si2o 1co20o

Pg (t') = PT s + pZC os 00 (A-119)

It is noted that P (t') in Equations (A-2e;A-2h) for the normal incidence

case (6 = 7/2) is identical to pT in Equation (A-Hi9). It is also noted

that t2 =t 3 sine o. Thus, Equations (A-lOa;b) become:

-4e e 3

3( 3 3 L 2)+u (Q)F. 4L e D-F( Xj +P r

for P in the lit region. (A-12a)

J jksjkt3a b 4 2 jj hi e-kS3;

for P in the shadow region. (A-12b)
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The pr appearing in Equation (A-12a) is given by

(Pt) cose 1

2p r = r /sino, PT=C (A-13)
t sin'o 2

The result of Equations (A-l0;b) or (A-12a;b) is valid outside the paraxial

reaions of the cylinder; i.e., it is valid for o not close to 00 or 1800.

One may view the incident field u' as being produced by a scalar point

source at the point P (P=PL or P=Ps) which receeds to infinity. If the strength

of this source is ao, then:

-jk(s i-s r)
~ ;( R a 0P (C r- a o0 c r- e3 3
ay 3 lit zone 3

(A-14a;A-14b)

Se jk s d -iS d S3-S 3 )
e ~~-js 3 ed js3S3

3Q a c u3(a)1  -d e
(a) ~ 0  -- ; u3)Ishadow es3oej

zone

(A-14c;A-14d)

The incident field u1 may be normalized to a unit spherical wave by suppressing

-jks3.I

the factor c e ,d for the case of "plane wave incidence".
s3

Let a scalar point source of strength b placed at P of Figure A-i

generate an incident field ul with the source at P (i.e., P=PL or P=Ps)

turned off. The total far zone field u3 of this source in the presence of

the cylinder is also obtainable from of Equations (A-12a;b) via reciprocity

and is given by
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P=PL if P is in the lit zone
b 0I b°  3(p) a ° u3(P )  ; (PL - )

|P=P if P is in the shadow zone.

L(Ps' )
(A-15)

It follows after some re-arrangement of terms that:

i-4u(Q e.__ 1-(X L )]  EL JP r P2" e
u3(PL) +3(P -(R 2,ff tL [1-F +P S Kr f _1 r

h 3

for P=P in the lit zone. (A-16a)

~jkt F- eJ l F(d)] + (l..I e-k
u3(Ps)U 3(Qb)j Qb)m(Qa) e d hija d

for P=P5 in the shadow zone. (A-16b)

In the above solution of Equations (A-16a;b) for the reciprocal or the point

source excitation problem, all the ray directions in Figures (A-1a;b) must

be reversed. Also, Ed and t3 must be defined as

Qa m(t')d f - r d' ; t dt' (A-17a;A-17b)

Qb P9 Qb

The quantities, pI and p2 represent the reflected ray caustic distances for

the point source excitation case.

Lr + 1 - ".= (A-18a;A-18b)

P1 '3P 2  p3

Thr can hEquoaned-8)i eie nEutin(-3.Teqatte

pl~pcanhe btanedvia Equation (6a) of Section Il-A. The quantities within

the radical signs outside the square brackets of Equation (A-16b) are defined

as
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diq(Qb) s3 (surface ray 2 caustic distance
( - t divergence Pc t for the surface
a 3 +t3 (factor s3+ diffracted ray

(A-lga;A-19b)

It is understood that the following far zone approximations are implied in

Equations (A-16a;b):

S-jks r (Si r -jk -jks 3
-k 3  -jk s.s33

u(PL)-bo c e -- e 33; u(QRbo c e - b c e

3 t3 3

, (A-20a;A-20b;A-20c)

-jksd -jk(s 3-s3)

533
u 3iPS)bo e d-e (A-?Od)

In conclusion, Equations (A-16a;b) represent the far zone field of

a scalar point source at r (see Figure la;b) which radiates in the presence

of a convex cylinder. If one suppresses the spherical wave factor

c e I /S rd in Equations (A-16a;b), one then obtains the "total far field

pattern" of that point source in the presence of the cylinder.
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